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A new method for estimation in a finite domain is proposed.  This method is referred to as Finite 
Domain Kriging.  The method combines the features of both Kriging and Inverse Distance 
estimation methods.  Finite Domain Kriging was tested using two real data sets, one from mining 
and the other one from petroleum.  In both cases, the proposed method was shown to outperform 
Simple and Ordinary Kriging. 

Introduction 

The boundary points in a string of data receive more weight than other data in the string.  To 
explain and analyze this phenomenon a comprehensive study of the influence of each and all data 
in a string on the estimation of finite domain was conducted by Babak (2006).  The weights are 
theoretically valid for a stationary and ergodic random function.  We believe, however, that this 
weighting of the boundary data could lead to biased estimation in a finite domain, especially if 
the data exhibits trends with boundary/border effects. 

In this paper, we propose a new method for kriging in a finite domain.  We will refer to this 
method as the Finite Domain Kriging.  The Finite Domain Kriging will correct the structure of 
the data influence in the string on all locations in the finite domain.  The correct structure will be 
imposed based on the ordering of weights in kriging using the distances from the location where 
we are estimating to all data in the string.  The proposed method will be tested using several small 
examples and will be applied to two real data sets from mining and petroleum.  Finally, the 
advantages and improvements in estimation obtained by using Finite Domain Simple Kriging or 
Finite Domain Ordinary Kriging in comparison to SK and OK, respectively, will be discussed.  

Proposal: Formulation of the Finite Domain Kriging 

In order to correct the structure of the influence of end samples in a string when estimating a 
finite domain, we propose to constrain the weights in kriging. Specifically, we propose to order 
the weights assigned by each location of interest to the string of data in the following way: the 
closest data in the string to the location of interest will receive the largest weight; the second 
closest data to the location of interest will receive the second weight and so on. In that way, the 
data in the string which is located furthest from the estimate location is assigned a weight based 
on a certain prescribed structure. 

To summarize the proposed approach, we note that we do not change the estimation problem. 
That is, we still work with Kriging. Specifically, we still choose the estimate for the location of 
interest which minimizes the estimation variance. However, we solve a constraint optimization 
problem, where a certain structure is prescribed to the assigned weights.  
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It is worth noting that the Finite Domain Kriging mixes characterististics of both Kriging and 
Inverse Distance estimation methods. It was already mentioned that the Finite Domain Kriging, 
SK and OK minimize the estimation variance. However, in Inverse Distance approach, the closest 
data (not the boundary data) will receive the largest weight in estimation. 

Now let us formalize the Finite Domain estimation problem. We consider both Finite Domain 
Simple Kriging and Finite Domain Ordinary Kriging estimation problems. 

Specifically, by the Finite Domain Simple Kriging (FDSK), the value at the location of interest is 
found as 
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where iX  denotes the ith value of the variable of interest in the string, *FDSKX  denotes the 
Finite Domain Simple Kriging estimate at the location of interest, m denotes the population mean, 
and the FDSK weights iFDSK ,λ  are found by solving the following constraint optimization 
problem  
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where 2
estσ  denotes the estimation variance, 2σ  denotes the variance of the data; ),( ji XXCov  

and *),( XXCov i  denote the covariance between data in the string and between data in the 
string and the location of interest, respectively, and id  denotes the distance from the location 
where we are estimating to the ith data point in the string, .,,1, nji …=   

By the Finite Domain Ordinary Kriging (FDOK) the value at the location of interest is found as 
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where iX  denotes the ith value of the variable of interest in the string, *FDOKX  denotes the 
Finite Domain Ordinary Kriging estimate at the location of interest, m denotes the population 
mean, and the FDSK weights iFDOK ,λ  are found by solving the following constraint optimization 
problem  
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where 2
estσ  denotes the estimation variance, 2σ  denotes the variance of the data; ),( ji XXCov  

and *),( XXCov i  denote the covariance between data in the string and between data in the 
string and location of interest, respectively, and id  denotes the distance from the location where 
we are estimating to the ith data in the string, .,,1, nji …=   

Implementation  

The Finite Domain Simple Kriging and Finite Domain Ordinary Kriging problems formulated by 
Equations (1)-(3) and (4)-(7), respectively, can be solved by using a non-linear constraint 
optimization. However, in this report, we propose to solve these problems differently. That is, we 
will reformulate both Finite Domain Simple Kriging and Finite Domain Ordinary Kriging in 
Equations (1)-(3) and (4)-(7) in such a way that simple nonlinear unconstrained optimization can 
be applied for solving them. 

Let us start with Finite Domain Simple Kriging. The minimization problem stated in (2)-(3) is 
equivalent to the following 
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where  2
estσ  denotes the estimation variance, 2σ  denotes the variance of the data; the FDSK 

weights iFDSK ,λ  are given by 

 μλ in vector element largest  th -1] -[ , += iiFDSK kn , (9) 

where μ is the new parameter vector of size n by 1 with respect to which minimization is 
performed, ][ 21 nkkkk …=  with ik  denoting the position of the distance from the location 
where we are estimating to the ith data in the string, id , is a vector of all 
distances ][ 21 ndddd …=  sorted in ascending order; and ),( ji XXCov  and *),( XXCov i  
denote the covariance between data in the string and between data in the string and location of 
interest, respectively, .,,1, nji …=  

Note that despite the minimization problem given by (8)-(9) is equivalent (it is equivalent because 
for each vector μ  there is unique a vector) to problem (2)-(3), it can be solved much more easily 
since we don’t need to bother about the constraints. Further, Finite Domain Simple Kriging 
problem in form (1), (8)-(9) will be considered. 

Similarly, we can rewrite the minimization problem stated in Equations (5)-(7) for the Finite 
Domain Ordinary Kriging as follows 
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where 2
estσ  denotes the estimation variance, 2σ  denotes the variance of the data; the FDOK 

weights iFDOK ,λ  are given by 
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where μ  is a new parameter vector of size n by 1 with respect to which minimization is 
performed, ][ 21 nkkkk …=  with ik  denoting the position of the distance from the location 
where we are estimating to the ith data in a string, id , is a vector of all 
distances ][ 21 ndddd …=  sorted in ascending order; and ),( ji XXCov  and *),( XXCov i  
denote the covariance between data in the string and between data in the string and location of 
interest, respectively, .,,1, nji …=  Further, Finite Domain Ordinary Kriging problem in form 
(4), (10)-(11) will be considered. 

Program 

For solution of the Finite Domain Simple Kriging in Equations (8)-(9) and Finite Domain 
Ordinary Kriging in Equations (10)-(11), the optimization subroutine MINF1 from the Scientific 
Subroutine Library II (SSL II) was used. This subroutine is designed to perform minimization of 
a function with several variables using revised quasi-Newton method based on function values 
only. For convenience this subroutine was incorporated to kt3d program. The new program is 
called kt3d_up. This program uses the same parameter file as kt3d, see Deutsch and Journel 
(1998) for reference. The result of running kt3d_up program, one obtains the file containing 
either 4 columns (grid option) with the ‘usual’ kriging estimate (either OK or SK depending on 
the chosen option) and its variance in columns 1 and 2 and, respectively, then the Finite Domain 
Kriging estimate and its variance in columns 3 and 4, respectively.  Alternatively, the output may 
consist of 10 columns (if cross validation or jackknife option is chosen) with the same 7 columns 
as would be obtained using kt3d program and Finite Domain Kriging estimate, its estimation 
variance and error in columns 8, 9 and 10. 

The following table compares the time required for program kt3d and kt3d_up to perform 
estimation for three small estimation exercises: 

 Kt3d Kt3d_up 
Exercise 1 0.26245740E+03 0.60797422E+03 
Exercise 2 0.20897048E+03 0.48253385E+03 
Exercise 3 0.29446342E+03 0.48515762E+03 

In general, we note that when estimating a finite domain using program kt3d_up, which performs 
both ‘usual’ Kriging (either Simple Kriging or Ordinary Kriging) and the corresponding type of 
Finite Domain Kriging, we spend about twice as much time compared to estimating a finite 
domain using program kt3d, which performs ‘usual’ Kriging. The time required for program 
kt3d_up to complete estimation depends, of course, on the number of steps required for function 
(8) in the Finite Domain Ordinary Kriging case or (10) in the Finite Domain Simple Kriging case 
to achieve the minimum at each location. 
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Small Examples 

To illustrate how optimal weights are found in Finite Domain Kriging approach several small 
exercises were performed. The aim of the exercises was the estimation of four locations at (1, 7), 
(1.8, 7), (2.8, 7) and (3.8,7) based on the string of 7 data located at (1,0), (2,0), (3,0), (4,0), (5,0), 
(6,0) and (7,0), respectively, using Finite Domain Kriging, SK and OK. Results of the estimation 
are shown in Figure 1 for Finite Domain Ordinary Kriging and Ordinary Kriging and, in Figure 2 
for Finite Domain Simple Kriging and Simple Kriging. The structure of optimal weights obtained 
by Finite Domain Kriging approaches is, of course, almost always different from the ones 
obtained based on both Simple and Ordinary Kriging. The only exception is when estimating 
locations which are located at the shortest distance to one of the two boundary data in the string 
(see Figure 2), then Finite Domain Simple Kriging results in the same estimate as SK. 

Practical Applications 

For comparison of the Finite Domain Simple Kriging and Finite Domain Ordinary Kriging with 
SK and OK, respectively, two real data sets were considered. One data set was chosen from a 
petroleum reservoir (data set 1) and one from a mineral deposit (data set 2). Both data sets contain 
the information from several vertical wells. Locations of these wells in the XY plane are shown in 
Figure 3 for both data sets. Figure 4 shows the histograms of the variables of interest for the 
petroleum and the mining data set. Figures 5 and 6 show the experimental variograms and their 
theoretical fits for the variable of interest in data set 1 and data set 2, respectively. 

Figure 7 shows the first and the middle slice in the XY plane of the 3D model for the variable of 
interest obtained based on the petroleum data set (data set 1) using OK and Finite Domain 
Ordinary Kriging. Figure 8 shows analogous results for the variable of interest but obtained based 
on the SK and Finite Domain Simple Kriging, respectively. For mining data set (data set 2) 
results are shown in Figures 9 and 10. 

In order to assess the improvement of Finite Domain Kriging estimation of the variable of interest 
over the ‘usual’ Kriging estimation, both cross validation and jackknife were applied. The 
number of data used in both validation techniques was set to be from 10 to 20 for data set 1 and 
data set 2. For jackknife validation only wells with at least two observations were used. As a 
measure of improvement over Simple and Ordinary Kriging, respectively, the following statistics 
were used 

(Sum of abs values of residuals of SK - Sum of abs values of residuals of FDSK)
mprovement over SK  100%

Sum of abs values of residuals of SK
I = ⋅  

 (12) 

(Sum of abs  values  of residuals  of OK - Sum of abs  values  of residuals  of  FDOK)
Improvement  over  OK  100%

Sum of abs values  of residuals of OK
= ⋅  

Note that the above statistics can take on both positive and negative values. The positive values, 
of course, correspond to the fact that Finite Domain Kriging indeed performed better than ‘usual’ 
kriging. On the other hand, negative values imply that Finite Domain Kriging performed worse 
than ‘usual’ kriging. 

The results of the crossvalidation for data set 1 are shown in Figures 11 and 12 and summarized 
in Table 1 using several statistics including the improvement measures given by equation (12). 
The results of the jackknife for this data set are given in Figures 13 and 14 and summarized in 
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Table 2. Figures 13 and 14 show the sign and magnitude as well as histogram of the improvement 
of Finite Domain Kriging estimation of the variable of interest over the ‘usual’ kriging 
estimation. 

The analogous results for cross validation of the mining data set (data set 2) are shown in Figures 
15, 16 and summarized in Table 3. The results of the jackknife for this data set are given in 
Figures 17 and 18 and summarized in Table 4. 

Conclusions 

A new approach for kriging in a finite domain using strings of data is proposed.  This approach, 
referred to as Finite Domain Kriging (FDK), combines characteristics of both Inverse Distance 
and Kriging.  Similar to an Inverse Distance estimate, the estimate obtained by FDK weights 
conditioning data based on the distance from the location of interest.  Similar to a kriged estimate, 
the estimate obtained using FDK is chosen to be the one which minimizes the estimation variance 
(but subject to distance constraints).  With respect to the constraint on the sum of weights given to 
conditioning data, two flavors of Finite Domain Kriging are considered.  That is, Finite Domain 
Simple Kriging, for which the sum of the weights can take on any value, and Finite Domain 
Ordinary Kriging, for which the sum of the weights is constrained to be one. 

The proposed approach to estimation of a finite domain using strings of data was tested using two 
real data sets, one data set from mining and one data set from petroleum.  The cross validation 
results for both data sets reveal an improvement over both SK and OK.  Specifically, it was 
observed for data set 1 that both Finite Domain Ordinary Kriging and Finite Domain Simple 
Kriging perform about 1.7% better than OK and SK, respectively.  For data set 2, improvement of 
Finite Domain approaches was even higher, it was over 2%.  Note that improvement was 
measured based on the sum of absolute values of error distributions obtained in cross validation. 

With respect to jackknife for petroleum data set, we observed that average improvement of Finite 
Domain Ordinary Kriging (FDOK) over OK is close to 5%.  The average improvement of Finite 
Domain Simple Kriging (FDSK) over SK for this data set is more than 3%. For data set 2 the 
improvement was not as significant, it was about 1.5% for FDOK over OK and only about 0.6% 
for FDSK over SK. In general, note, however, that in both cases method developed in this report 
performed better than both Simple and Ordinary Kriging with respect to both cross validation and 
jack knife. 
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a)                                                                        b) 

 
c)                                                                     d) 

 
e) f) 

Figure 1: Structure of the Finite Domain Ordinary Kriging (solid line) and Ordinary Kriging 
(dashed line) weights when estimation location: a) (1,7); b) (1.8, 7); c) (2.8, 7) and d) (3.8,7) 
using Spherical variogram model with the range of correlation 20; e) (1,7) and f) (3.8,7) using 
Spherical variogram model with the range of correlation based on the string of 7 data located at 
(1,0), (2,0), (3,0), (4,0), (5,0), (6,0) and (7,0), respectively.  
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a)                                                                     b) 

 
c)                                                                     d) 

 
e)                                                                    f) 

 
Figure 2: Structure of the Finite Domain Simple Kriging (solid line) and Simple Kriging (dashed 
line) weights when estimation location: a) (1,7); b) (1.8, 7); c) (2.8, 7) and d) (3.8,7) using 
Spherical variogram model with the range of correlation 20; e) (1,7) and f) (3.8,7) using Spherical 
variogram model with the range of correlation based on the string of 7 data located at (1,0), (2,0), 
(3,0), (4,0), (5,0), (6,0) and (7,0), respectively.  
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a)                                                                            b) 

Figure 3: Locations of the wells for a) data set 1 and b) data set 2. 
 
 
 
 

 
a)                                                                             b) 

Figure 4: Histogram of the variable of interest in a) data set 1 and b) data set 2. 
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Figure 5: Experimental variogram and its theoretical fit in the three directions of major 
continuity for the variable of interest in the data set 1. 
 
 
 

 
Figure 6: Experimental variogram and its theoretical fit for the variable of interest in the data set 
2. 
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Figure 7: The first (top) and the middle (bottom) slice in the XY plane of the 3D model for the 
variable of interest obtained based on the petroleum data set (data set 1) using Ordinary Kriging 
(first column) and Finite Domain Ordinary Kriging (second column). 

 
 
 

 

 
 

Figure 8: The first (top) and the middle (bottom) slice in the XY plane of the 3D model for the 
variable of interest obtained based on the petroleum data set (data set 1) using Ordinary Kriging 
(first column) and Finite Domain Ordinary Kriging (second column). 
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Figure 9: The first (top) and the middle (bottom) slice in the XY plane of the 3D model for the 
variable of interest obtained based on the mining data set (data set 2) using Ordinary Kriging 
(first column) and Finite Domain Ordinary Kriging (second column). 

 
 

 

 
Figure 10: The first (top) and the middle (bottom) slice in the XY plane of the 3D model for the 
variable of interest obtained based on the mining data set (data set 2) using Ordinary Kriging 
(first column) and Finite Domain Ordinary Kriging (second column). 
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Figure 11: Result of cross validation for Ordinary Kriging (top) and Finite Domain Ordinary 
Kriging (bottom) for data set 1: crossplot between true value of the variable of interest and its 
estimate (first column) and histogram of errors (second column). 

 
 

 
Figure 12: Result of cross validation for Simple Kriging (top) and Finite Domain Simple Kriging 
(bottom) for data set 1: crossplot between true value of the variable of interest and its estimate 
(first column) and histogram of errors (second column). 



 111-14 

      
 

 
 

 
Figure 13: Result of jackknife shown as improvement of Finite Domain Ordinary Kriging over 
Ordinary Kriging for data set 1: improvement map and improvement per datum map (top), 
histograms of positive and negative improvement (middle) and histograms of positive and 
negative improvement (bottom). 
 
 
 
 



 111-15 

      
          

 
 

 
 
Figure 14: Result of jackknife shown as improvement of Finite Domain Simple Kriging over 
Simple Kriging for data set 1: improvement map and improvement per datum map (top), 
histograms of positive and negative improvement (middle) and histograms of positive and 
negative improvement (bottom). 
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Figure 15: Result of cross validation for Ordinary Kriging (top) and Finite Domain Ordinary 
Kriging (bottom) for data set 2: crossplot between true value of the variable of interest and its 
estimate (first column) and histogram of errors (second column). 
 
 

 
Figure 16: Result of cross validation for Simple Kriging (top) and Finite Domain Simple Kriging 
(bottom) for data set 2: crossplot between true value of the variable of interest and its estimate 
(first column) and histogram of errors (second column). 
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Figure 17: Result of jackknife shown as improvement of Finite Domain Ordinary Kriging over 
Ordinary Kriging for data set 2: improvement map and improvement per datum map (top), 
histograms of positive and negative improvement (middle) and histograms of positive and 
negative improvement (bottom). 
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Figure 18: Result of jackknife shown as improvement of Finite Domain Simple Kriging over 
Simple Kriging for data set 2: improvement map and improvement per datum map (top), 
histograms of positive and negative improvement (middle) and histograms of positive and 
negative improvement (bottom). 
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Table 1: Result of cross validation for all 13341 data of the data set 1. 
Type of 
Kriging 

Min  
error 

Max  
error 

Average 
error 

Std of  
error 

Correlation 
between 
true and 
estimate 

Sum abs  
error 

Improvement 
% 

Impr. 
Per 
data, 
% 

OK -17.9570 12.8420 0.0092 1.4738 0.9591 11681.86 
FDOK -17.7430 12.7530 0.0133 1.4649 0.9596 11484.07 

1.6932 0.0001 

SK -17.9170 12.8670 0.0110 1.4723 0.9592 11699.12 
FDSK -17.7790 12.8280 0.0161 1.4636 0.9597 11504.26 

1.6656 0.0001 

 
 
Table 2: Result of jackknife for 241 wells of the data set 1. 

Types of 
Kriging 

Min  
improv., 
% 

Min 
improv. 
per 
datum, 
% 

Max 
improv., 
% 

Max 
impro
v. 
per 
datum, 
% 

Average  
improv., 
% 

Average  
improv. 
per 
datum, 
% 

Number 
of 
positive  
improv. 

Number 
of 
negative  
improv. 

Abs 
relativ
e 
impro
v., 
times 

FDOK 
vs OK 

-49.543 -0.1111 86.1440 0.3034 4.8411 0.0031 144 97 5.3133 

FDSK 
vs SK  

-188.89 -0.0936 67.7523 0.2840 3.1502 0.0030 141 100 2.6268 

 
 
Table 3: Result of cross validation for all 470 data of the data set 2. 

Type of 
Kriging 

Min  
error 

Max  
error 

Average 
error 

Std of  
error 

Correlation 
between 
true and 
estimate 

Sum abs  
error 

Improvement 
% 

Impr. 
Per 
data, 
% 

OK -10.8630 5.8210 0.0048 1.8333 0.3315 530.4240 
FDOK -10.9600 5.9650 0.0078 1.8088 0.3458 518.2180 

2.3012 0.0049 

SK -10.8740 5.7390 0.0041 1.8318 0.3264 529.9470 
FDSK -10.9460 5.8420 -0.0025 1.8072 0.3415 519.1820 

2.0313 0.0043 

 
 
Table 4: Result of jackknife for 108 wells of the data set 2. 

Types 
of 
Kriging 

Min  
improv., 
% 

Min 
improv. 
per 
datum, 
% 

Max 
improv., 
% 

Max 
improv. 
per 
datum, 
% 

Average  
improv., 
% 

Average  
improv. 
per 
datum, 
% 

Number 
of 
positive 
improv. 

Number 
of 
negative  
improv. 

Abs 
relative 
improv., 
times 

FDOK 
vs OK 

-62.920 -0.1293 49.2140 0.2094 1.5194 0.0082 58 50 1.3360 

FDSK 
vs SK  

-59.009 -0.1449 42.0032 0.2021 0.5862 0.0051 57 51 1.1159 

 


