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A new method for estimation in a finite domain is proposed. This method is referred to as Finite
Domain Kriging. The method combines the features of both Kriging and Inverse Distance
estimation methods. Finite Domain Kriging was tested using two real data sets, one from mining
and the other one from petroleum. In both cases, the proposed method was shown to outperform
Simple and Ordinary Kriging.

Introduction

The boundary points in a string of data receive more weight than other data in the string. To
explain and analyze this phenomenon a comprehensive study of the influence of each and all data
in a string on the estimation of finite domain was conducted by Babak (2006). The weights are
theoretically valid for a stationary and ergodic random function. We believe, however, that this
weighting of the boundary data could lead to biased estimation in a finite domain, especially if
the data exhibits trends with boundary/border effects.

In this paper, we propose a new method for kriging in a finite domain. We will refer to this
method as the Finite Domain Kriging. The Finite Domain Kriging will correct the structure of
the data influence in the string on all locations in the finite domain. The correct structure will be
imposed based on the ordering of weights in kriging using the distances from the location where
we are estimating to all data in the string. The proposed method will be tested using several small
examples and will be applied to two real data sets from mining and petroleum. Finally, the
advantages and improvements in estimation obtained by using Finite Domain Simple Kriging or
Finite Domain Ordinary Kriging in comparison to SK and OK, respectively, will be discussed.

Proposal: Formulation of the Finite Domain Kriging

In order to correct the structure of the influence of end samples in a string when estimating a
finite domain, we propose to constrain the weights in kriging. Specifically, we propose to order
the weights assigned by each location of interest to the string of data in the following way: the
closest data in the string to the location of interest will receive the largest weight; the second
closest data to the location of interest will receive the second weight and so on. In that way, the
data in the string which is located furthest from the estimate location is assigned a weight based
on a certain prescribed structure.

To summarize the proposed approach, we note that we do not change the estimation problem.
That is, we still work with Kriging. Specifically, we still choose the estimate for the location of
interest which minimizes the estimation variance. However, we solve a constraint optimization
problem, where a certain structure is prescribed to the assigned weights.
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It is worth noting that the Finite Domain Kriging mixes characterististics of both Kriging and
Inverse Distance estimation methods. It was already mentioned that the Finite Domain Kriging,
SK and OK minimize the estimation variance. However, in Inverse Distance approach, the closest
data (not the boundary data) will receive the largest weight in estimation.

Now let us formalize the Finite Domain estimation problem. We consider both Finite Domain
Simple Kriging and Finite Domain Ordinary Kriging estimation problems.

Specifically, by the Finite Domain Simple Kriging (FDSK), the value at the location of interest is
found as

X FDSK* = inzlﬂ“FDSK,i Xi + ll_ Zin:l/L:DSK,i Jm’ oy

where X, denotes the i" value of the variable of interest in the string, X ¢ * denotes the

Finite Domain Simple Kriging estimate at the location of interest, m denotes the population mean,
and the FDSK weights A ; are found by solving the following constraint optimization

problem
miniznize ol =0’ —ZZn:AFDSKViCov(Xi,X*)+anzn:/1FDSK‘i/1FDSK'jC0v(Xi,Xj) )
i=1 i=1 j=1
subject to
Aeoski > Aepskjo 1f d; <dj, foreach i, j=1,...,n, (3)
where ofst denotes the estimation variance, o> denotes the variance of the data; Cov(X,, X J.)

and Cov(X;, X*) denote the covariance between data in the string and between data in the
string and the location of interest, respectively, and d, denotes the distance from the location
where we are estimating to the i" data point in the string, i, j=1,...,Nn.

By the Finite Domain Ordinary Kriging (FDOK) the value at the location of interest is found as
n
Xepok ™ = i=1/1FD0K,i X 4

where X, denotes the i" value of the variable of interest in the string, X oo« * denotes the

Finite Domain Ordinary Kriging estimate at the location of interest, m denotes the population
mean, and the FDSK weights A, ; are found by solving the following constraint optimization

problem

minimize o =0 =2)_ Ao COV(X, X*) + D> Arpor iAok ;COV(X 1, X ;) (5)

est
2 i1 i=1 j=1

subject to
Aepoki > Arpo, i 1F i <dj, i j=1...,n, 6)
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z ﬂ“FDOK,i =1 (7)
i=1

where o2,

denotes the estimation variance, o> denotes the variance of the data; Cov(X,, X J.)
and Cov(X;, X*) denote the covariance between data in the string and between data in the

string and location of interest, respectively, and d; denotes the distance from the location where
we are estimating to the i" data in the string, i, j=1,...,n.

Implementation

The Finite Domain Simple Kriging and Finite Domain Ordinary Kriging problems formulated by
Equations (1)-(3) and (4)-(7), respectively, can be solved by using a non-linear constraint
optimization. However, in this report, we propose to solve these problems differently. That is, we
will reformulate both Finite Domain Simple Kriging and Finite Domain Ordinary Kriging in
Equations (1)-(3) and (4)-(7) in such a way that simple nonlinear unconstrained optimization can
be applied for solving them.

Let us start with Finite Domain Simple Kriging. The minimization problem stated in (2)-(3) is
equivalent to the following

minimize o =07 =2) Arpse, COV(X 1, X+ D°D " AroseiAeosk, COV(X, X ) (8)

V% i=1 i=1l j=1

2
est

weights A.q ; are given by

where o, denotes the estimation variance, o denotes the variance of the data; the FDSK

Aepsc i =[N -k; +1]-th largest elementin vector x, 9)

where g is the new parameter vector of size n by 1 with respect to which minimization is
performed, k =[k, k, ... k,] with k; denoting the position of the distance from the location
where we are estimating to the i" data in the string, di, is a vector of all
distancesd =[d, d, ...d,] sorted in ascending order; and Cov(X;,X;) and Cov(X;, X*)
denote the covariance between data in the string and between data in the string and location of
interest, respectively, i, j=1,...,n.

Note that despite the minimization problem given by (8)-(9) is equivalent (it is equivalent because
for each vector u there is unique a vector) to problem (2)-(3), it can be solved much more easily

since we don’t need to bother about the constraints. Further, Finite Domain Simple Kriging
problem in form (1), (8)-(9) will be considered.

Similarly, we can rewrite the minimization problem stated in Equations (5)-(7) for the Finite
Domain Ordinary Kriging as follows

minimize o =0 =2 Ao COV(X, X*) + D" Arporideook ;COV(X;, X ;) (10)
i=1

" i=1 j=1
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where o2, denotes the estimation variance, o? denotes the variance of the data; the FDOK

est

weights Ao ; are given by

_ [n-k; +1]-th largest elementin vector u
sum of all elementin x '

i

(11)

where u is a new parameter vector of size n by 1 with respect to which minimization is
performed, k =[k, k, ... k,] with k; denoting the position of the distance from the location
where we are estimating to the i™ data in a string, d., is a vector of all

distancesd =[d, d, ...d,] sorted in ascending order; and Cov(X;,X;) and Cov(X;, X*)

denote the covariance between data in the string and between data in the string and location of
interest, respectively, 1, j =1,...,n. Further, Finitt Domain Ordinary Kriging problem in form

(4), (10)-(11) will be considered.
Program

For solution of the Finite Domain Simple Kriging in Equations (8)-(9) and Finite Domain
Ordinary Kriging in Equations (10)-(11), the optimization subroutine MINF1 from the Scientific
Subroutine Library Il (SSL 1) was used. This subroutine is designed to perform minimization of
a function with several variables using revised quasi-Newton method based on function values
only. For convenience this subroutine was incorporated to kt3d program. The new program is
called kt3d_up. This program uses the same parameter file as kt3d, see Deutsch and Journel
(1998) for reference. The result of running kt3d_up program, one obtains the file containing
either 4 columns (grid option) with the ‘usual’ kriging estimate (either OK or SK depending on
the chosen option) and its variance in columns 1 and 2 and, respectively, then the Finite Domain
Kriging estimate and its variance in columns 3 and 4, respectively. Alternatively, the output may
consist of 10 columns (if cross validation or jackknife option is chosen) with the same 7 columns
as would be obtained using kt3d program and Finite Domain Kriging estimate, its estimation
variance and error in columns 8, 9 and 10.

The following table compares the time required for program kt3d and kt3d_up to perform
estimation for three small estimation exercises:

Kt3d Kt3d_up
Exercise 1 0.26245740E+03 0.60797422E+03
Exercise 2 0.20897048E+03 0.48253385E+03
Exercise 3 0.29446342E+03 0.48515762E+03

In general, we note that when estimating a finite domain using program kt3d_up, which performs
both ‘usual’ Kriging (either Simple Kriging or Ordinary Kriging) and the corresponding type of
Finite Domain Kriging, we spend about twice as much time compared to estimating a finite
domain using program kt3d, which performs ‘usual’ Kriging. The time required for program
kt3d_up to complete estimation depends, of course, on the number of steps required for function
(8) in the Finite Domain Ordinary Kriging case or (10) in the Finite Domain Simple Kriging case
to achieve the minimum at each location.
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Small Examples

To illustrate how optimal weights are found in Finite Domain Kriging approach several small
exercises were performed. The aim of the exercises was the estimation of four locations at (1, 7),
(1.8, 7), (2.8, 7) and (3.8,7) based on the string of 7 data located at (1,0), (2,0), (3,0), (4,0), (5,0),
(6,0) and (7,0), respectively, using Finite Domain Kriging, SK and OK. Results of the estimation
are shown in Figure 1 for Finite Domain Ordinary Kriging and Ordinary Kriging and, in Figure 2
for Finite Domain Simple Kriging and Simple Kriging. The structure of optimal weights obtained
by Finite Domain Kriging approaches is, of course, almost always different from the ones
obtained based on both Simple and Ordinary Kriging. The only exception is when estimating
locations which are located at the shortest distance to one of the two boundary data in the string
(see Figure 2), then Finite Domain Simple Kriging results in the same estimate as SK.

Practical Applications

For comparison of the Finite Domain Simple Kriging and Finite Domain Ordinary Kriging with
SK and OK, respectively, two real data sets were considered. One data set was chosen from a
petroleum reservoir (data set 1) and one from a mineral deposit (data set 2). Both data sets contain
the information from several vertical wells. Locations of these wells in the XY plane are shown in
Figure 3 for both data sets. Figure 4 shows the histograms of the variables of interest for the
petroleum and the mining data set. Figures 5 and 6 show the experimental variograms and their
theoretical fits for the variable of interest in data set 1 and data set 2, respectively.

Figure 7 shows the first and the middle slice in the XY plane of the 3D model for the variable of
interest obtained based on the petroleum data set (data set 1) using OK and Finite Domain
Ordinary Kriging. Figure 8 shows analogous results for the variable of interest but obtained based
on the SK and Finite Domain Simple Kriging, respectively. For mining data set (data set 2)
results are shown in Figures 9 and 10.

In order to assess the improvement of Finite Domain Kriging estimation of the variable of interest
over the ‘usual’ Kriging estimation, both cross validation and jackknife were applied. The
number of data used in both validation techniques was set to be from 10 to 20 for data set 1 and
data set 2. For jackknife validation only wells with at least two observations were used. As a
measure of improvement over Simple and Ordinary Kriging, respectively, the following statistics
were used

(Sum of abs values of residuals of SK - Sum of abs values of residuals of FDSK)
Improvement over SK = -100%

Sum of abs values of residuals of SK

(12)

(Sum of abs values of residuals of OK - Sum of abs values of residuals of FDOK)
Improvement over OK = -100%

Sum of abs values of residuals of OK

Note that the above statistics can take on both positive and negative values. The positive values,
of course, correspond to the fact that Finite Domain Kriging indeed performed better than “usual’
kriging. On the other hand, negative values imply that Finite Domain Kriging performed worse
than ‘usual’ kriging.

The results of the crossvalidation for data set 1 are shown in Figures 11 and 12 and summarized
in Table 1 using several statistics including the improvement measures given by equation (12).
The results of the jackknife for this data set are given in Figures 13 and 14 and summarized in
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Table 2. Figures 13 and 14 show the sign and magnitude as well as histogram of the improvement
of Finite Domain Kriging estimation of the variable of interest over the ‘usual’ kriging
estimation.

The analogous results for cross validation of the mining data set (data set 2) are shown in Figures
15, 16 and summarized in Table 3. The results of the jackknife for this data set are given in
Figures 17 and 18 and summarized in Table 4.

Conclusions

A new approach for kriging in a finite domain using strings of data is proposed. This approach,
referred to as Finite Domain Kriging (FDK), combines characteristics of both Inverse Distance
and Kriging. Similar to an Inverse Distance estimate, the estimate obtained by FDK weights
conditioning data based on the distance from the location of interest. Similar to a kriged estimate,
the estimate obtained using FDK is chosen to be the one which minimizes the estimation variance
(but subject to distance constraints). With respect to the constraint on the sum of weights given to
conditioning data, two flavors of Finite Domain Kriging are considered. That is, Finite Domain
Simple Kriging, for which the sum of the weights can take on any value, and Finite Domain
Ordinary Kriging, for which the sum of the weights is constrained to be one.

The proposed approach to estimation of a finite domain using strings of data was tested using two
real data sets, one data set from mining and one data set from petroleum. The cross validation
results for both data sets reveal an improvement over both SK and OK. Specifically, it was
observed for data set 1 that both Finite Domain Ordinary Kriging and Finite Domain Simple
Kriging perform about 1.7% better than OK and SK, respectively. For data set 2, improvement of
Finite Domain approaches was even higher, it was over 2%. Note that improvement was
measured based on the sum of absolute values of error distributions obtained in cross validation.

With respect to jackknife for petroleum data set, we observed that average improvement of Finite
Domain Ordinary Kriging (FDOK) over OK is close to 5%. The average improvement of Finite
Domain Simple Kriging (FDSK) over SK for this data set is more than 3%. For data set 2 the
improvement was not as significant, it was about 1.5% for FDOK over OK and only about 0.6%
for FDSK over SK. In general, note, however, that in both cases method developed in this report
performed better than both Simple and Ordinary Kriging with respect to both cross validation and
jack knife.
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Figure 1: Structure of the Finite Domain Ordinary Kriging (solid line) and Ordinary Kriging
(dashed line) weights when estimation location: a) (1,7); b) (1.8, 7); c) (2.8, 7) and d) (3.8,7)
using Spherical variogram model with the range of correlation 20; e) (1,7) and f) (3.8,7) using
Spherical variogram model with the range of correlation based on the string of 7 data located at
(1,0), (2,0), (3,0), (4,0), (5,0), (6,0) and (7,0), respectively.
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Figure 2: Structure of the Finite Domain Simple Kriging (solid line) and Simple Kriging (dashed
line) weights when estimation location: a) (1,7); b) (1.8, 7); ¢) (2.8, 7) and d) (3.8,7) using
Spherical variogram model with the range of correlation 20; €) (1,7) and f) (3.8,7) using Spherical
variogram model with the range of correlation based on the string of 7 data located at (1,0), (2,0),
(3,0), (4,0), (5,0), (6,0) and (7,0), respectively.
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Data set 1: Well locations
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Data set 2: Well locations

Figure 3: Locations of the wells for a) data set 1 and b) data set 2.

Deta set 1: Histogram
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Figure 4: Histogram of the variable of interest in a) data set 1 and b) data set 2.
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Figure 7: The first (top) and the middle (bottom) slice in the XY plane of the 3D model for the
variable of interest obtained based on the petroleum data set (data set 1) using Ordinary Kriging
(first column) and Finite Domain Ordinary Kriging (second column).

Figure 8: The first (top) and the middle (bottom) slice in the XY plane of the 3D model for the
variable of interest obtained based on the petroleum data set (data set 1) using Ordinary Kriging
(first column) and Finite Domain Ordinary Kriging (second column).
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Figure 9: The first (top) and the middle (bottom) slice in the XY plane of the 3D model for the
variable of interest obtained based on the mining data set (data set 2) using Ordinary Kriging
(first column) and Finite Domain Ordinary Kriging (second column).
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Figure 10: The first (top) and the middle (bottom) slice in the XY plane of the 3D model for the
variable of interest obtained based on the mining data set (data set 2) using Ordinary Kriging
(first column) and Finite Domain Ordinary Kriging (second column).
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Ordinary Kriging error
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Figure 11: Result of cross validation for Ordinary Kriging (top) and Finite Domain Ordinary
Kriging (bottom) for data set 1: crossplot between true value of the variable of interest and its
estimate (first column) and histogram of errors (second column).
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Figure 12: Result of cross validation for Simple Kriging (top) and Finite Domain Simple Kriging
(bottom) for data set 1: crossplot between true value of the variable of interest and its estimate

(first column) and histogram of errors (second column).
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Figure 13: Result of jackknife shown as improvement of Finite Domain Ordinary Kriging over
Ordinary Kriging for data set 1: improvement map and improvement per datum map (top),
histograms of positive and negative improvement (middle) and histograms of positive and
negative improvement (bottom).
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Figure 14: Result of jackknife shown as improvement of Finite Domain Simple Kriging over
Simple Kriging for data set 1: improvement map and improvement per datum map (top),
histograms of positive and negative improvement (middle) and histograms of positive and
negative improvement (bottom).
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Figure 17: Result of jackknife shown as improvement of Finite Domain Ordinary Kriging over
Ordinary Kriging for data set 2: improvement map and improvement per datum map (top),
histograms of positive and negative improvement (middle) and histograms of positive and
negative improvement (bottom).
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Figure 18: Result of jackknife shown as improvement of Finite Domain Simple Kriging over
Simple Kriging for data set 2: improvement map and improvement per datum map (top),
histograms of positive and negative improvement (middle) and histograms of positive and
negative improvement (bottom).
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Table 1: Result of cross validation for all 13341 data of the data set 1.

Type of Min Max Average Std of Correlation | Sum abs Improvement | Impr.
Kriging error error error error between error % Per
true and data,
estimate %
OK -17.9570 | 12.8420 0.0092 1.4738 | 0.9591 11681.86 1.6932 0.0001
FDOK -17.7430 | 12.7530 0.0133 1.4649 | 0.9596 11484.07
SK -17.9170 | 12.8670 0.0110 1.4723 | 0.9592 11699.12 1.6656 0.0001
FDSK -17.7790 | 12.8280 0.0161 1.4636 | 0.9597 11504.26
Table 2: Result of jackknife for 241 wells of the data set 1.
Types of | Min Min Max Max Average | Average | Number | Number | Abs
Kriging improv., | improv. improv., | impro | improv., | improv. of of relativ
% per % V. % per positive negative | e
datum, per datum, improv. improv. impro
% datum, % V.,
% times
FDOK -49.543 -0.1111 86.1440 | 0.3034 | 4.8411 0.0031 144 97 5.3133
vs OK
FDSK -188.89 -0.0936 67.7523 | 0.2840 | 3.1502 0.0030 141 100 2.6268
vs SK
Table 3: Result of cross validation for all 470 data of the data set 2.
Type of Min Max Average | Stdof | Correlation | Sum abs Improvement Impr.
Kriging error error error error between error % Per
true and data,
estimate %
OK -10.8630 | 5.8210 0.0048 1.8333 | 0.3315 530.4240 2.3012 0.0049
FDOK -10.9600 | 5.9650 0.0078 1.8088 | 0.3458 518.2180
SK -10.8740 | 5.7390 0.0041 1.8318 | 0.3264 529.9470 2.0313 0.0043
FDSK -10.9460 | 5.8420 -0.0025 1.8072 | 0.3415 519.1820
Table 4: Result of jackknife for 108 wells of the data set 2.
Types Min Min Max Max Average | Average [Number | Number | Abs
of improv., | improv. improv., | improv. improv., | improv. [of of relative
Kriging | % per % per % per positive | negative | improv.,
datum, datum, datum, improv. | improv. times
% % %
FDOK | -62.920 | -0.1293 49.2140 | 0.2094 1.5194 0.0082 58 50 1.3360
vs OK
FDSK | -59.009 | -0.1449 42.0032 | 0.2021 0.5862 0.0051 57 51 1.1159
vs SK
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